РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА №4

«Элементы теории игр и принятия решений»

Задание 1. Геометрическим методом найти решение игры с заданной платежной матрицей.

платежнои матрицеи.	
№1. $A = \begin{pmatrix} 0.5 & 0.3 & 0.6 & 0.7 & 0.8 \\ 0.6 & 0.5 & 0.4 & 0.9 & 1.1 \end{pmatrix}$	№16. $A = \begin{pmatrix} 3 & 9 \\ 6 & 4 \\ 7 & 6 \\ 9 & 8 \end{pmatrix}$
Nº2. $A = \begin{pmatrix} 3 & -5 \\ 1 & -2 \\ 4 & 2 \\ -4 & 3 \end{pmatrix}$ Nº3. $A = \begin{pmatrix} 2 & -3 & 5 & 4 \\ 4 & 2 & -4 & 3 \end{pmatrix}$	№17. $A = \begin{pmatrix} 5 & 6 \\ 3 & 8 \\ 2 & 9 \\ 4 & 7 \end{pmatrix}$
№3. $A = \begin{pmatrix} 2 & -3 & 5 & 4 \\ 4 & 2 & -4 & 3 \end{pmatrix}$	No18. $A = \begin{pmatrix} 5 & 8 & 4 & 7 & 6 \\ 1 & 2 & 8 & 4 & 3 \end{pmatrix}$
№4. $A = \begin{pmatrix} 1.1 & 0.6 & 0.8 & 1.0 & 0.4 \\ 1.2 & 0.4 & 0.3 & 0.2 & 0.6 \end{pmatrix}$	№19. $A = \begin{pmatrix} 3 & 7 & 6 & 4 \\ 8 & 4 & 9 & 8 \end{pmatrix}$ №20. $A = \begin{pmatrix} 8 & 7 & 4 & 4 & 7 \\ 2 & 4 & 6 & 8 & 10 \end{pmatrix}$
N≥5. $A = \begin{pmatrix} 3 & 6 \\ 2 & 4 \\ 5 & 3 \\ 4 & 7 \end{pmatrix}$	
№6. $A = \begin{pmatrix} 3 & 6 & 1 & 4 & 2 \\ 5 & 2 & 4 & 2 & 7 \end{pmatrix}$	№21. $A = \begin{pmatrix} 5 & 8 & 6 & 4 & 7 \\ 3 & 2 & 4 & 8 & 9 \end{pmatrix}$
№7. $A = \begin{pmatrix} -5 & 3 & -1 & -2 & 2 \\ -2 & 5 & -3 & -4 & 3 \end{pmatrix}$	№21. $A = \begin{pmatrix} 5 & 8 & 6 & 4 & 7 \\ 3 & 2 & 4 & 8 & 9 \end{pmatrix}$ №22. $A = \begin{pmatrix} 3 & 6 & 1 & 4 \\ 5 & 2 & 4 & 2 \end{pmatrix}$
No. $A = \begin{pmatrix} 3 & 6 & 1 & 4 & 2 \\ 5 & 2 & 4 & 2 & 7 \end{pmatrix}$ No. $A = \begin{pmatrix} -5 & 3 & -1 & -2 & 2 \\ -2 & 5 & -3 & -4 & 3 \end{pmatrix}$ No. $A = \begin{pmatrix} -3 & 4 \\ 2 & -2 \\ -2 & 5 \\ 3 & -4 \end{pmatrix}$ No. $A = \begin{pmatrix} 2 & 5 & 8 & 5 \\ 7 & 3 & 4 & 6 \end{pmatrix}$	№23. $A = \begin{pmatrix} 3 & 6 & 1 & 4 \\ 5 & 3 & 6 & 2 \end{pmatrix}$
№9. $A = \begin{pmatrix} 2 & 5 & 8 & 5 \\ 7 & 3 & 4 & 6 \end{pmatrix}$	№24. $A = \begin{pmatrix} 1 & 4 \\ 6 & 5 \\ 5 & 6 \\ 3 & 9 \end{pmatrix}$
№10. $A = \begin{pmatrix} 2 & 4 & 3 & 5 \\ 5 & 2 & -3 & -4 \end{pmatrix}$	№25. $A = \begin{pmatrix} 7 & -5 & -2 & 4 \\ 5 & 1 & 3 & 2 \end{pmatrix}$

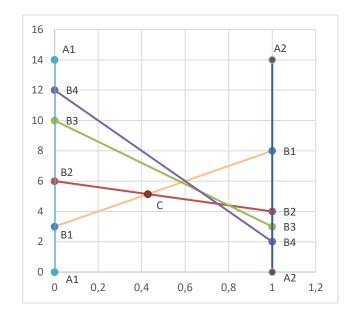
№11. $A = \begin{pmatrix} 7 & 10 & 8 & 5 & 6 \\ 4 & 6 & 7 & 10 & 8 \end{pmatrix}$	№26. $A = \begin{pmatrix} 3 & 5 & 1 & 1 \\ 4 & 2 & 3 & 3 \end{pmatrix}$
No 12. $A = \begin{pmatrix} 4 & 3 \\ 2 & 5 \\ 6 & 1 \\ 7 & 4 \end{pmatrix}$	№27. $A = \begin{pmatrix} 2 & 1 \\ 3 & 6 \\ -2 & 4 \\ -1 & 5 \end{pmatrix}$
№13. $A = \begin{pmatrix} 5 & 3 & 7 & 4 \\ 2 & 6 & 1 & 8 \end{pmatrix}$	№28. $A = \begin{pmatrix} 4 & -3 & 6 & 1 \\ 2 & -1 & 3 & 7 \end{pmatrix}$
№14. $A = \begin{pmatrix} 5 & 7 & 4 & 6 \\ 2 & 1 & 8 & 3 \end{pmatrix}$	№29. $A = \begin{pmatrix} 6 & 8 & 3 & 5 & 7 \\ 4 & 7 & 2 & 9 & 3 \end{pmatrix}$
№15. $A = \begin{pmatrix} 7 & 3 & 6 & 4 & 1 \\ 2 & 1 & 3 & 8 & 4 \end{pmatrix}$	№30. $A = \begin{pmatrix} -1 & 5 & 2 & -4 & 3 \\ -2 & 3 & 5 & -3 & 5 \end{pmatrix}$

Задание 2. Найти решение игры с заданной платежной матрицей путем сведения ее к задаче линейного программирования.

No. $A = \begin{pmatrix} 5 & 3 \\ 2 & 4 \end{pmatrix}$	№16. $A = \begin{pmatrix} 3 & 9 \\ 6 & 4 \end{pmatrix}$
№2. $A = \begin{pmatrix} 2 & 5 \\ 7 & 4 \end{pmatrix}$	№17. $A = \begin{pmatrix} 7 & 6 \\ 3 & 8 \end{pmatrix}$
№3. $A = \begin{pmatrix} 2 & 4 \\ 5 & 3 \end{pmatrix}$	№18. $A = \begin{pmatrix} 5 & 4 \\ 2 & 6 \end{pmatrix}$
№4. $A = \begin{pmatrix} 3 & 1 \\ 2 & 4 \end{pmatrix}$	№19. $A = \begin{pmatrix} 4 & 3 \\ 2 & 5 \end{pmatrix}$
№5. $A = \begin{pmatrix} 5 & 3 \\ 4 & 7 \end{pmatrix}$	№20. $A = \begin{pmatrix} 1 & 3 \\ 5 & 2 \end{pmatrix}$
№6. $A = \begin{pmatrix} 3 & 1 \\ 2 & 4 \end{pmatrix}$	№21. $A = \begin{pmatrix} 7 & 2 \\ 3 & 4 \end{pmatrix}$
№7. $A = \begin{pmatrix} 4 & 2 \\ 3 & 6 \end{pmatrix}$	№22. $A = \begin{pmatrix} 9 & 1 \\ 2 & 3 \end{pmatrix}$
№8. $A = \begin{pmatrix} 8 \ 1 \\ 2 \ 3 \end{pmatrix}$	№23. $A = \begin{pmatrix} 3 & 6 \\ 5 & 1 \end{pmatrix}$
No. $A = \begin{pmatrix} 6 & 2 \\ 3 & 4 \end{pmatrix}$	№24. $A = \begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}$

№10. $A = \begin{pmatrix} 2 & 3 \\ 5 & 2 \end{pmatrix}$	№25. $A = \begin{pmatrix} 7 & 1 \\ 3 & 2 \end{pmatrix}$
№11. $A = \begin{pmatrix} 5 & 2 \\ 1 & 6 \end{pmatrix}$	№26. $A = \begin{pmatrix} 3 & 5 \\ 4 & 1 \end{pmatrix}$
№12. $A = \begin{pmatrix} 4 & 3 \\ 2 & 5 \end{pmatrix}$	№27. $A = \begin{pmatrix} 3 & 1 \\ 2 & 6 \end{pmatrix}$
№13. $A = \begin{pmatrix} 2 & 6 \\ 5 & 3 \end{pmatrix}$	№28. $A = \begin{pmatrix} 4 & 2 \\ 3 & 6 \end{pmatrix}$
№14. $A = \begin{pmatrix} 5 & 4 \\ 2 & 8 \end{pmatrix}$	№29. $A = \begin{pmatrix} 6 & 8 \\ 7 & 4 \end{pmatrix}$
№15. $A = \begin{pmatrix} 7 & 1 \\ 2 & 3 \end{pmatrix}$	№30. $A = \begin{pmatrix} 5 & 2 \\ 3 & 4 \end{pmatrix}$

Пример выполнения задания 1.



Из рисунка определяем, что оптимальная смешанная стратегия игрока B включает стратегии B1 и B2.

Найдем вероятности использования стратегий A1 и A2 игроком A по формулам (выбираем столбцы матрицы, соответствующие полезным стратегиям игрока B - B1 и B2):

$$p_1 = \frac{a_{22} - a_{21}}{a_{11} + a_{22} - a_{12} - a_{21}} = 0.57$$
 $p_2 = 1 - p_1 = 0.43.$

Найдем цену игры по одной из формул:

$$\begin{cases} a_{11}p_1 + a_{21}p_2 = v \\ a_{12}p_1 + a_{22}p_2 = v \end{cases}$$
 v = 5,14.

Найдем вероятности использования стратегий B1 и B2 игроком B по формулам, например, для полезной стратегии B1:

$$\begin{cases} a_{11}q_1 + a_{12}q_2 = v & q_1 = 0,29 \\ q_1 + q_2 = 1 & q_2 = 0,71 \end{cases}$$

Таким образом, цена игры v = 5,14.

Оптимальные стратегии игроков:
$$S_A = \left\{ \frac{A_1}{0,57}, \frac{A_2}{0,43} \right\}; S_B = \left\{ \frac{B_1}{0,29}, \frac{B_2}{0,71} \right\}$$

Пример выполнения задания 2.

Найти решение игры с заданной платежной матрицей путем сведения ее к задаче линейного программирования.

8	2	4
4	5	6
1	7	3

Для игрока А	Для игрока В
$\begin{cases} p_{1}a_{11} + p_{2}a_{21} + p_{3}a_{31} \geq v, \\ p_{1}a_{12} + p_{2}a_{22} + p_{3}a_{32} \geq v, \\ p_{1}a_{13} + p_{2}a_{23} + p_{3}a_{33} \geq v. \\ p_{1} + p_{2} + p_{3} = 1 \end{cases} $ (1)	$\begin{cases} q_{1}a_{11} + q_{2}a_{12} + q_{3}a_{13} \leq v, \\ q_{1}a_{21} + q_{2}a_{22} + q_{3}a_{23} \leq v, \\ q_{1}a_{31} + q_{2}a_{32} + q_{3}a_{33} \leq v. \\ q_{1} + q_{2} + q_{3} = 1 \end{cases} $ (1)
Введем обозначения:	Введем обозначения:
$\frac{p_1}{v} = y_1; \frac{p_2}{v} = y_2; \frac{p_3}{v} = y_3 \tag{2}$	$\frac{q_1}{v} = x_1; \frac{q_2}{v} = x_2; \frac{q_3}{v} = x_3 \tag{2}$
$\begin{cases} y_1 a_{11} + y_2 a_{21} + y_3 a_{31} \ge 1, \\ y_1 a_{12} + y_2 a_{22} + y_3 a_{32} \ge 1, \\ y_1 a_{13} + y_2 a_{23} + y_3 a_{33} \ge 1. \end{cases}$ $Z = y_1 + y_2 + y_3 = \frac{1}{v} \rightarrow \min$	$\begin{cases} x_1 a_{11} + x_2 a_{12} + x_3 a_{13} \le 1, \\ x_1 a_{21} + x_2 a_{22} + x_3 a_{23} \le 1, \\ x_1 a_{31} + x_2 a_{32} + x_3 a_{33} \le 1. \end{cases}$ $F = x_1 + x_2 + x_3 = \frac{1}{v} \to \max$

Решим ЗЛП для игрока В

Используя соответствие переменных, получим решения взаимно двойственных ЗЛП:

Откуда

Найдем цену игры $v = 1 / F \max = 4,6$.

Найдем вероятности использования стратегий игроками по формулам (2)

Видно, что полезными являются только две стратегии из трех для обоих игроков.

Таким образом, цена игры v = 4,6.

Оптимальные стратегии игроков:
$$S_A = \left\{ \frac{A_1}{0,1}, \frac{A_2}{0,9} \right\}; S_B = \left\{ \frac{B_1}{0,4}, \frac{B_2}{0,6} \right\}$$